2023年qq二次元网名可爱-二次元可爱网名3篇【优秀范文】

时间:2023-02-26 16:10:06 来源:网友投稿

qq二次元网名可爱-二次元可爱网名1  噶吱脆!  ぐ紷紷豬﹏☆  恋糖猫≧﹏≦  空岛里的戀少女  好奇宝宝!  头上夹着蝴蝶结丶  满满都是爱°  逗比式i  可爱的过分  ★·°甜了夏天  我下面是小编为大家整理的2023年qq二次元网名可爱-二次元可爱网名3篇【优秀范文】,供大家参考。

2023年qq二次元网名可爱-二次元可爱网名3篇【优秀范文】

qq二次元网名可爱-二次元可爱网名1

  噶吱脆!

  ぐ紷紷豬﹏☆

  恋糖猫≧﹏≦

  空岛里的戀少女

  好奇宝宝!

  头上夹着蝴蝶结丶

  满满都是爱°

  逗比式i

  可爱的过分

  ★·°甜了夏天

  我是凹凸曼。

  啊不呀棒棒哒

  最爱的人儿阿

  我喜欢kimi

  窗边的豆豆豆i

  ㄣ巷梶貓ㄣ

  软Q糖

  格格污的猫儿

  最萌兽星i

  ☆甜心宝贝

  倾听ゝ小情歌

  我会呵呵哟

  呆°

  丿sa灬萌系小妹子

  ■ゞ、爽歪歪· ■ゞ、乳娃娃·

  ζ萌界扛把子


qq二次元网名可爱-二次元可爱网名3篇扩展阅读


qq二次元网名可爱-二次元可爱网名3篇(扩展1)

——二次元的qq网名3篇

二次元的qq网名1

  笨笨猪

  全球少女萌主

  幸运符号

  乡下孩子最嗨皮i

  猫七

  ?{飛﹎嚒嚒

  不听话就打屁屁喔

  ○萌萌哒天然呆≧3≦

  玛丽莲梦兔,

  疯宝宝i

  海绵宝宝控㈤

  卡哇伊

  馋猫儿.

  小盆友i

  逗比就要逗比范er

二次元的qq网名2

  噶吱脆!

  ぐ紷紷豬﹏☆

  恋糖猫≧﹏≦

  空岛里的戀少女

  好奇宝宝!

  头上夹着蝴蝶结丶

  满满都是爱°

  逗比式i

  可爱的过分

  ★·°甜了夏天

  我是凹凸曼。

  啊不呀棒棒哒

  最爱的人儿阿

  我喜欢kimi

  窗边的豆豆豆i

  ㄣ巷梶貓ㄣ

  软Q糖

  格格污的猫儿

  最萌兽星i

  ☆甜心宝贝

  倾听ゝ小情歌

  我会呵呵哟


qq二次元网名可爱-二次元可爱网名3篇(扩展2)

——简约可爱的二次元网名 (菁选3篇)

简约可爱的二次元网名1

  ぐ紷紷豬﹏☆

  恋糖猫≧﹏≦

  空岛里的.戀少女

  好奇宝宝!

  头上夹着蝴蝶结丶

  满满都是爱°

  逗比式i

  可爱的过分

  ★·°甜了夏天

  我是凹凸曼。

  啊不呀棒棒哒

  最爱的人儿阿

  我喜欢kimi

  窗边的豆豆豆i

简约可爱的二次元网名2

  全球少女萌主

  幸运符号

  乡下孩子最嗨皮i

  猫七

  ?{飛﹎嚒嚒

  不听话就打屁屁喔

  ○萌萌哒天然呆≧3≦

  玛丽莲梦兔,

  疯宝宝i

  海绵宝宝控㈤

  卡哇伊

  馋猫儿.

  小盆友i

  逗比就要逗比范er

简约可爱的二次元网名3

  噶吱脆!

  ぐ紷紷豬﹏☆

  恋糖猫≧﹏≦

  空岛里的戀少女

  好奇宝宝!

  头上夹着蝴蝶结丶

  满满都是爱°

  逗比式i

  可爱的`过分

  ★·°甜了夏天

  我是凹凸曼。

  啊不呀棒棒哒

  最爱的人儿阿

  我喜欢kimi

  窗边的豆豆豆i

  ㄣ巷梶貓ㄣ


qq二次元网名可爱-二次元可爱网名3篇(扩展3)

——软妹网名二次元-好听的网名二次元 (菁选2篇)

软妹网名二次元-好听的网名二次元1

  柠凉°

  掌中花

  旧夏天

  柠檬草

  禄苑橙

  茉莉花

  久夏青

  沐晴

  温凉少女

  夏花流年

  半邊陽光

  陌上柳絮

  封面恋人

  森屿海巷@

  甜蜜的味道

  晨与橙与城

  旅行箱和梦想

软妹网名二次元-好听的网名二次元2

  浪女无家

  淡若悠然

  十里温柔

  酒场狼女

  不忘初衷

  縯出結涑

  如花似梦

  初雪未央

  冷心为王

  屁颠小孩

  萌量不足

  单纯的想你

  萌δ莼ぃ夏

  左心房是你

  梦想的.初衷

  夏夜凉心

  橙家菇凉

  初夏少女

  柒种颜色

  梅芳竹清

  夏花流年


qq二次元网名可爱-二次元可爱网名3篇(扩展4)

——《一元二次方程》教学反思10篇

《一元二次方程》教学反思1

  在“一次函数”一章时已经了解了一次函数与一元一次方程,一元一次不等式(组),二元一次方程组的联系。本章专门设一节,通过探讨二次函数与一元二次方程的关系,再次展示函数与方程的联系。一方面可以深化我们对一元二次方程的认识,另一方面又可以运用一元二次方程解决二次函数的有关问题。

  利用二次函数图像求一元二次方程的实数根。

  本节通过画图,看图,分析图,列表对比,抽象概括进行教学,让每个学生动手,动口,动脑,积极参与,提高教学效率和教学质量(此文来自优秀),使学生进一步理解数形结合和从特殊到一般的思想方法。不足之处是:有少部分学生对函数与方程之间的关系有点费解。通过了解发现:这部分同学对一次函数和方程的关系也不熟悉,也就是数学基础不扎实,还有就是数形结合能力差,也就是不能建立数与形之间的联系。他们为什么不能很好的做到这些呢?我想,这正是本节课的要点所在。在今后的教学中,一定关注这一点,解决之。

《一元二次方程》教学反思2

  (序:周二下午第四节开教研活动,教导处张主任公布了让我第一个讲数学公开课。当时,我以为自己听错了,后来我才确认——锻炼自己的机会来了!今天下午第二节我走上讲台,下课后,感想挺多的!)

  本节课的主要内容是:让学生知道什么样的方程是一元二次方程?怎样判断一个方程是不是一元二次方程?知道一元二次方程的一般形式,确定二次项系数、一次项系数、常数项的方法。

  本节课的教学,首先我采用制作教具让学生完成3个探究题的方法,然后通过探究、讨论、总结、归纳的方法,让学生在轻松愉快的学习环境中学习,师生配合的也很和谐、很默契,学生自然理解的也非常透彻,掌握的也很好。

  但教学过程中,也有明显的不足,具体表现在:

  (1)、在制作无盖盒子时不是那么成功,也耽误了一些时间。因此,最后补充的一个练习题,本来计划在课堂上解决的,但到最后却布置成了课外练习,显得练习的题有些单调,缺少多样化!

  (2)、课堂上没有关注全体学生。在我提出其中一个问题时,班里有位女士很积极的举起了手,许多同学都看见了,但我却没有看见,所以也没有提问她。后来,听学生说剩下的时间她再也没有举手。我感觉自己挺失败的!因为我大大的挫伤了学生的积极性。虽然这是一次无意的伤害,但我决定明天要向这位女生道歉,因为她是受害者。

  所以,教师除了备教材,还要备学生!

《一元二次方程》教学反思3

  一元二次方程是九年级上册第二单元内容,是今后学习二次函数的基础,是初中数学教材的一个重要内容。

  一、课前思考。

  1、学生基础。在七八年级学生已经学习过一元一次方程、二元一次方程组、分式方程的知识,有着很好的解题基础。

  2、教学重点应放在解题方法上,让学生通过观察发现每一种解法的特征,是学生能够根据特征选择合适的解题方法。

  3、应注意培养学生的解题技能,解题速度、解题的正确率,特别是利用配方法界一元二次方程时,必须让学生区分方程的配方与式子配方的不同。

  4、每节课必须进行小测验,可根据题的难易程度不同,将题量控制在3——5道之间。

  二、教学过程中学生出现的主要问题。

  1、学生不善于观测,特别是在将四种方法全部学习完之后,学生不能很好的选择合适的方法。例如:能用直接开*方的题,确将其展开再配方;能利用十字相乘法分解因式的,却选择公式法等。

  2、对符号处理的不正确,贴别是一个负的无理分数和一个分数相加时,总是将负号放在分数线的前面。

  3、十字相乘法中,常数项分解为两个数相乘时,出现符号错误。

  4、用配方法计算时错误率较高。

  5、用公式法计算时,没有将b2——4ac的结果放在根号下。

  三、教后反思

  1、今后在将四种方法讲完之后,要用两节课的时间进行综合练习,第一节课可以采用让学生练习解题的方式,第二节课可以采用让学生说解法、让学生找解题错误之处方法进行。

  2、增加小测验的力度,可以将题量减小,次数增加。这样不仅可以增加学生的信心,也可以通过不断的重复,增强学生的熟练程度。

  3、为了让学生学会选择合适的方法解题,可以采用同桌互相按要求出题的方法,达到学生对各种解法特征的目的。

《一元二次方程》教学反思4

  一、教学目标:

  1。经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

  2。理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

  3。能够利用二次函数的图象求一元二次方程的近似根。

  二、教学重点、难点:

  教学重点:

  1。体会方程与函数之间的联系。

  2。能够利用二次函数的图象求一元二次方程的近似根。

  教学难点:

  1。探索方程与函数之间关系的过程。

  2。理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

  三、教学方法:启发引导 合作交流

  四:教具、学具:课件

  五、教学媒体:计算机、实物投影。

  六、教学过程:

  [活动1] 检查预习 引出课题

  预习作业:

  1。解方程:(1)x2+x—2=0; (2) x2—6x+9=0; (3) x2—x+1=0; (4) x2—2x—2=0。

  2。 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x—4=0的解。

  师生行为:教师展示预习作业的内容, 指名回答,师生共同回顾旧知,教师做出适当总结和评价。

  教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

  设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

  [活动2] 创设情境 探究新知

  问题

  1。课本P16 问题。

  2。结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

  (结合预习题1,完成课本P16 观察中的题目。)

  师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

  二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

  二次函数y=ax2+bx+c的图象和x轴交点

  一元二次方程ax2+bx+c=0的根

  一元二次方程ax2+bx+c=0根的判别式=b2—4ac

  两个交点

  两个相异的实数根

  b2—4ac 0

  一个交点

  两个相等的实数根

  b2—4ac = 0

  没有交点

  没有实数根

  b2—4ac 0

  教师重点关注:

  1。学生能否把实际问题准确地转化为数学问题;

  2。学生在思考问题时能否注重数形结合思想的应用;

  3。学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

  设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

  [活动3] 例题学习 巩固提高

  问题: 例 利用函数图象求方程x2—2x—2=0的实数根(精确到0。1)。

  师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

  教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

  设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

  [活动4] 练习反馈 巩固新知

  问题:(1) P97。习题 1、2(1)。

  师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。

  教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。

  设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。

  [活动5] 自主小结,深化提高:

  1。通过这节课的学习,你获得了哪些数学知识和方法?

  2。这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。

  师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。

  设计意图:

  1。题促使学生反思在知识和技能方面的收获;

  2。题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。

  [活动6] 分层作业,发展个性:

  1。(必做题)阅读教材并完成P97 习题21。2: 3、4。

  2。(备选题)P97 习题21。2:5、6

  设计意图:分层作业,使不同层次的学生都能有所收获。

  七、教学反思:

  1。注重知识的发生过程与思想方法的应用

  《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生跳一跳就可以摘到桃子。

  探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的.过程中,引导学生观察图形, 从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

  2。关注学生学习的过程

  在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的*台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造海阔凭鱼跃,天高任鸟飞的课堂境界。

  3。强化行为反思

  反思是数学的重要活动,是数学活动的核心和动力,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,数学日记就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。数学日记该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

  4。优化作业设计

  作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。

《一元二次方程》教学反思5

  这节课的教学目标为理解一元二次方程的概念及其解,认识一元二次方程的一般形式,并会熟练地把一元二次方程化为一般形式.

  这节课以有关于"动物园"的几个小问题,让学生列出方程(有一元一次和一元两次方程),讨论这些方程的异同,引出课题---一元二次方程.教师引导下学生概括出一元二次方程的定义以及二元一次方程的解的概念后,从内涵到外延来加强学生对这些的概念的理解和把握.学生的学习效果都非常好.接下来的重要环节就是归纳出一元二次方程的一般形式,了解二次项,一次项,常数项以及二次项系数,一次项系数等.学生练习板书反映比较好.时间充足给出一个思考题进行能力的提高,在教师的引导下大部分学生都能顺利的求解出来,最后进行课堂小结,学生自由发言,非常积极.

  通过这节课的点评与自我反思,以后要在师生交流方面都下工夫,重视学生的想法,多给学生一点"自主"学习的时间,同时加强板书教学,提高学生课堂学习的"实效".

《一元二次方程》教学反思6

  不足的是:1、对于字母系数的方程,因为比较抽象,学生在用配方法解比较陌生,需要过多的时间,使得本节课未能完全按计划完成任务。

  2、学生在用公式法解题时主要存在如下问题: (1)a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号 。

  (2)当b的值是负数时,在代入公式时,往往漏掉公式中b前面的“-”号。

  (3)部分学生在实际运用中,没有先计算b

  a,b,c的相应的数值代入公式求根。

  其实在做题过程中提醒学生先确认a,b,c的相应的数值准确后,再检验一下判别式,这是很关键的两步,不要过于着急待入求值,在教学中,这一点还是需要进一步强调的。在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果

  回想本课的教学,虽然存在一些问题,但整节课的实施过程还算顺利,学生对本课的知识掌握程度还不错,基本上达到本课的教学目的。

《一元二次方程》教学反思7

  一元二次方程是学生学习了一元一次方程和二元一次方程组之后所接触的第三类方程,所以对于它的概念,学生很容易理解。通过这节课的教学我有如下几点感想:

  一、引导学生观察、类比、联想已学的一元一次方程、二元一次方程,归纳、总结出一元二次方程,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态之中,使新概念的得出觉得意外,让学生跳一跳就可以摘到桃子。

  二、合理选材,优化教学,在教学中,忠实于教材,要研究的基础上使用教材。教学方法合理化,不拘于形式,通过一系列的活动来展开教学,发展了学生的思维能力,增强了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。

  三、整节课的设计以落实双基为起点,培养学生独立思考的能力,重视知识和产生过程,关注人的发展。无论是教学环节设计,还是作业的布置上,我注意分层次教学,让每一个学生都得到不同的发展

  四、为了真正做到有效的合作学习,我在活动中大胆地让学生自主完成。先让学生把问题提出来,然后让学生带着问题去讨论,这样学生在讨论时就有目的,就会事半功倍。也让不同层次的学生得到不同的发展。也符合新课程的教学理念。

  不足之处:引入方面有待加强,不够激发学生的学习兴趣;板书还有待加强,应给学生做出示范;给学生思考的时间还不够。

《一元二次方程》教学反思8

  本两周继续学习一元二次方程的解法及应用,我现从方程的应用来反思如下:

  新课程要求培养学生应用数学的意识与能力,作为数学教师,我们要充分利用已有的生活经验,把所学的数学知识用到现实中去,体会数学在现实中应用价值。

  本章节的应用基本上是以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题。这类注重联系实际考查学生数学应用能力的问题,体现时代性,并且结合社会热点、焦点问题,引导学生关注国家、人类和世界的命运。既有强烈的德育功能,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用。

  对教学过程进行反思,既有成功的一面,又有不足之处。需改进的方面有:

  1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如P46有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示。

  2、只考虑捕捉学生的思维亮点,一生列错了方程,老师没有给予及时纠正。导致使一些同学陷入误区。

  3、有些问题讲的过于快,理解较慢的同学跟不上。

《一元二次方程》教学反思9

  关于一元二次方程的概念的引入。我对课本做了两点变动:一是增加一例趣味性故事,引出数学问题,从而列出方程;二是将课本上关于生产总值的例子改成中考升学考上重点中学人数问题。以上变动主要是基于以下考虑:一是创设情境,激发学生的学习兴趣,又能学习从实际问题中归纳出数学模型;二是课本上的生产总值问题感觉离学生比较遥远。反思本节课的教学,我觉得有以下不足:

  引入概念时的例子太多,有点难,在解应用题方面花费了一些时间,有点“喧宾夺主”,课前的例子应尽可能的简单,只要让学生能列出一元二次方程即可。

  对于一元二次方程的一般形式,二次项系数、一次项系数、常数项这些内容,我觉得时间还比较少,应多加练习,特别是对后进生,如果一元二次方程已经写成一般形式,他们找二次项系数、一次项系数、常数项没有困难。如果需要进一步化简整理成一般形式,他们开始出错。问题出在他们基础没打好,化简整理过程中出现诸如移项时项的符号出错的问题,应多加练习指导。

《一元二次方程》教学反思10

  这节课的教学目标为理解一元二次方程的概念及其解,认识一元二次方程的一般形式,并会熟练地把一元二次方程化为一般形式.

  这节课以有关于"动物园"的几个小问题,让学生列出方程(有一元一次和一元两次方程),讨论这些方程的异同,引出课题---一元二次方程.教师引导下学生概括出一元二次方程的定义以及二元一次方程的解的概念后,从内涵到外延来加强学生对这些的概念的理解和把握.学生的学习效果都非常好.接下来的重要环节就是归纳出一元二次方程的一般形式,了解二次项,一次项,常数项以及二次项系数,一次项系数等.学生练习板书反映比较好.时间充足给出一个思考题进行能力的.提高,在教师的引导下大部分学生都能顺利的求解出来,最后进行课堂小结,学生自由发言,非常积极.

  通过这节课的点评与自我反思,以后要在师生交流方面都下工夫,重视学生的想法,多给学生一点"自主"学习的时间,同时加强板书教学,提高学生课堂学习的"实效".


qq二次元网名可爱-二次元可爱网名3篇(扩展5)

——一元二次方程说课稿3篇

一元二次方程说课稿1

  一、教材分析

  (一)、教材的地位和作用《一元二次方程》是人教版九年制义务教育课程标准实验教科书九年级上册第二十二章第(1)节内容。一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。在此之前,学生已学习了一元一次方程,因式分解等知识,这为过渡到本节的学习起着铺垫作用。同时为今后学习一元二次不等式及二次函数打下基础。

  (二)、根据上述教材分析,考虑到学生已有的认知结构心理特征,特制定如下教学目标:

  ①知识与技能目标:理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。

  ②过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

  ③情感态度与价值观目标:通过对《一元二次方程》的教学,激发学生学习数学的兴趣,体会数学的快乐,形成主动学习的态度。

  (三)、教学重难点及关键

  介于学生对知识理解和掌握程度的差异与不同,立足渗透类比这一重要思想方法,又根据大纲的要求,所以我确定教学重点为:由实际问题列出一元二次方程和一元二次方程的概念。教学难点为:由实际问题列出一元二次方程及准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。因此这节课的关键则为通过问题情景的设计,课堂实验的研讨,引导学生发现,分析和解决问题。

  二、学生分析

  任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。这就要求我们教师必须从学生的认知结构和心理特征出发。九年级的学生较为活泼开朗,对新鲜事物的好奇心也较强。使得他们很快就能融入课堂,接受知识也事半功倍。当他们在解决实际问题时,发现列出的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想需要进一步研究和探索有关方程的问题。从而激发学生学习的兴趣,促进学生个性的形成和发展。要让学生成为课堂真正的主人,变厌学为乐学。

  三、教法与学法分析

  ①教法分析:本节课坚持“以学生为主体,教师为主导”原则。为了使学生在知识上和能力上都有所提高,本节课我采用探究式教学法和合作交流法。首先是探究式教学法,根据学生的认知规律,对学生创设合适的学习情景,引导学生自主探索、积极参与课堂活动,其目的在于培养学生探索精神以及学生学习探究方法。其次是合作交流法,就是让学生共同讨论,有浅入深、有特殊到一般的提出问题,引导学生自主探索,合作交流,从而有效激发学生学习的积极性。

  ②学法分析:在教师的组织引导下,采用自主探索,合作交流研讨式学习方法,让学生思考问题、获取知识、掌握方法,借此培养学生的动手、动脑、动口的能力,使学生真正的成为学习中的主体。

  四、教学过程设计

  为了体现在教学中循序渐进,讲练结合的特点,本节课安排了情景引入、新课学习、

  归纳小结、巩固练习、课堂小结、课后作业六个环节组成。

  (一)、情景引入

  给出3个数据x,6,3,请同学们自己编一道方程,并求出这个方程的解。这个设计在于引导学生回忆复习已经学过的一元一次方程。通过自己编方程的形式引起学生们的注意,同时也激发了学生学习的兴趣。紧接着我又出示这样三个数据:6,3,x2,你还能编一个方程出来吗?因此在一个有趣的问题中引入本节课《一元二次方程》。从而激发学生的求知欲望,顺利地进入新课。

  (二)、新课学习

  因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例:

  一张矩形的铁片,长100厘米,宽50厘米。在他的四角各切去一个同样地正方形,然后将四角突起部分折起就能制作一个无盖的方盒。如果要制作的无盖方盒的底面积为3600*方厘米,那么铁片各角应切去多大的正方形?

  应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,同时突破难点之一的“由实际问题列出一元二次方程”。通过上述情景分析,让学生小组讨论,然后列出方程。

  英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是就定义教定义。因此,我在课本的基础上,又补充第2个实例:

  要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛。比赛组织者应邀请多少个队参加比赛?

  这里我设计了三个问题帮助学生理解:①全部比赛共有多少场?

  ②如果邀请x个队比赛,每个队都要与其它队共赛多少场?③甲对与乙队,乙队与甲对的比赛是同一场比赛,所以全部比赛共有多少场呢?小组讨论,并列出方程。

  《新教学理念》指出:教师要把课堂还给学生,让学生成为课堂上真正的主人。同时用提问的方式引导学生,也让学生更有兴趣的去分析和发现问题,从而解决问题。

  (三)归纳小结

  在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征,同时一元一次方程相比较,找出两者的区别与联系,并类比一元一次方程的概念来得出一元二次方程的概念。由于一元二次方程的概念是本节的重点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、自我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数的最高次数是2。因为任何一个一元一次方程都可

  以化为“ax+b=c(a≠0)”的形式,由此类比得出一元二次方程的一般形式为“ax2+bx+c=0(a≠0)”;并由一元一次方程项及系数的概念联想得出一元二次方程的项及系数的概念。

  (四)巩固练习

  为了使学生进一步明确一元二次方程的概念,我出示以下练习。判断下列各式是否是一元二次方程:

  ①x2+2x-y=3

  ②mn+3=0

  ③a2=4

  ④13x2+2x+1=0

  我让学生巩固练习,在巩固中提高。从学生心理条件来讲,喜欢参与一些有挑战性的活动,而老师又希望学生达到一定的熟练程度。因此通过这组练习加深学生对一元二次方程的理解和掌握。同时,对概念进行变式应用,可以开拓学生思维,培养学生的创新意识。

  紧接着,我遵循巩固与发展想结合的原则,先引导学生学习课本例题,接着进行赏析。这个例题已经明确让我们“将方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数”。其实,即使课本没有这样指明,或者说,课本安排这道例题的用意,就是让学生养成将一元二次方程化为一般形式后再进行研究的良好习惯。因为,所谓的“二次项、一次项和常数项”都是在一元二次方程化为一般形式后的项。

  接着,就是练习了。在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。

  (五)课堂小结

  最后我再引导学生做如下思考:

  (1)这节课你学会了什么数学知识?

  (2)这节课你又学会了什么数学方法?

  (3)通过这节课的学习,你觉得对你又有什么帮助呢?

  一节有趣的数学课,就是要照顾到每一个层次的学生,让每一个人都有一种成就感。因此整个过程我让学生同桌之间进行,以培养学生的归纳、概括的能力。

  (六)布置作业

  考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做、思考题三类。以便同时兼顾到学有困难和学有余力的学生。

一元二次方程说课稿2

  [教材分析]

  中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。因此一元二次方程便成为了方程中研究的重要内容。一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。

  [学生分析]

  进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。再加上我所执教的学生,他们有着较强的认知力与求知欲,

  基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。

  [教学目标]

  在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。

  能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。

  理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。

  [教学重难点]

  发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程

  [教学过程]

  (一)复习导入

  请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。

  (二)探求新知

  数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。初探新知中,我将学生们分成两组,分别对二次项系数为 1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。我在这些方程中安排了两个无理根方程。当学生们发现这两个无理根在求和,求积后,竟变成了有理数,而且每一组两根和(积)都与系数有着密切的联系,此时的他们不难对两根和与两根积产生关注,经历了对二次项系数为1的一元二次方程两根和差积商的研究后,确定了课题并获得猜想:“两根和等于一次项系数的相反数, 两根积等于常数项。”对于这一猜想,会有学生提出不同看法,他们提出研究二次项系数非 1 的一元二次方程。学生的质疑启动再探新知。直接研究一元二次方程两根和、两根积与系数的关系。这一环节中我不再给出具体的方程要求研究,故除了部分同学自定义方程求根求和求积后产生猜想,还有部分同学对仍保留在板书部分的求根公式着手进行两根和,积的运算。这两种方案齐头并进,当前者通过不断验证来说明他们猜想的可靠度时,后者通过论证,在严格意义下,说明了此结论的正确性。对于论证中学生出现的问题,我们在第一时间内揪错指正,

  在知识初探与再探后,学生获得了新知,得到了一元二次方程根与系数的关系,

  三、训练感悟

  我将之前从学生那里收集来的错解对照表中方程,询问检验其正误的方法。学生根据已有经验,将其代入方程,进行检验。为寻求更为简便的方法,引出作用一,利用根与系数的关系,不解方程检验两数是否为原方程的根。我再给出两例,便于巩固练习,更明确了只有当两数和(积)同时满足方程两根和(积)的时侯,才是正确的根。当学生们正为找到了一种行之有效的检验方法,高兴不已的时候。突然间,表格中的数据丢失了,我分别隐去了方程的一根及b,c,a三个系数。为了将材料修复,学生小组展开热烈的讨论。有了上一题的经验,学生们会利用根与系数关系,不解方程,求出另一根及系数。也会使用代入求解的方法解题,通过新旧方法的比较,在训练中获得感悟:方法的选择在于简便,学生们在选择了恰当的方法后,修复了材料也巩固了新知。

  四、总结提升,

  由学生回顾知识的发生发展及应用过程,以“我的收获” 与“我的疑惑”交流心得。我再帮助学生整理所学知识,引导领会数学的思想。我还会自豪的告诉他们,数学家们还发现了存在于一元n次方程中的根与系数的普遍关系,这一内容将在高数中有所涉及,激励奋进

  五、分层作业,

  [设计意图]

  现在的设计较之以往,有所继承,有所变革。

  1 研究启动入口不同

  过去我总是先给出若干具体方程要求学生求根,并计算两根和(积),作出猜想。这样的数学后曾有学生问我:“老师为什么会想到两根和(积)与系数的关系,而不是其它?”这种疑问的产生一定与过去设计指定了学生的活动过程有关,为了给学生的活动指向更为宽泛,让两根和积与系数的研究更显合理, 现在的设计中主要体现了由数到式的研究,从两根和差积商的重组合再有所观察,有所挑选,方才定位于两根和(积)作进一步的探究。这种设计正是从数学内部下了功夫,由知识线索的连贯性,师生共同理顺了实验对象的来龙去脉,从数学本身上培养了学生的观察、分析、概括的综合能力。

  2探究部分两步走

  我将二次项系数为1,非 1的一元二次方程分两次出现,分别放置与知识初探和再探两个环节,这样设计的原因有二:学生的认知能力总是有所差异的,如果将这些方程合二为一加以研究的话,一部分同学对别人获得的正确猜想是瞬间接受,却缺乏思维的参与。事实上,研究事物往往从简单到复杂,在这里,当a=1 时,易找规律,当 a ≠1后造成的认知冲突,更是激发了这一猜想的完善。其实这一串, 由实验——猜想——再实验——再猜想的思维过程,既符合认知规律,也是一种研究性学习的示范,一种创造性能力的培养。为了让每一个学生都亲身参与其中,真正感受由“实践——认识——再实践——再认识” 这一客观世界认知论的基本规律。便是我如此设计的原因之一。原因二:研究入口处,利用两根和差积商的结果,优选出对和积的研究。初探中二次项系数为 1 的方程两根计算足以起到这一筛选作用。因此在下一环节的再探新知中,便自然关闭了对两根差与商相对较为繁琐的计算,直接由两根和积入手研究与系数的关系,提高了研究的效率。

  3 再探新知放手走

  我没有再给出任何具体的方程以供研究,这里的放手,引出了学生不同的操作方法。一部分学生把注意力转放在求根公式上展开直接论证,就连另一部分学生自定义方程数据研究的方式也各不相同,他们有的翻开笔记本查阅之前解方程的资料;有的反凑特殊值方程;更有的会从中提炼出代数论证的方法;当然也有借助于计算器完成了繁琐的计算。

  放手的探究,为了给学生更大的思维空间,让学生有更多方法的选择,从而展开自主的学习。

  [尾声]

  但原学生们带着对数学的兴趣与喜爱,在学的海洋里,奋勇搏击。而作为一名青年教师的我,亦将在教学的舞台上,不断求索。多由学生所想来引导;多设角度空间去探究;多从细节处渗透数学思想,充分利用数学课堂来达成文化传承与发展创新的协调统一。

一元二次方程说课稿3

  一、 教材分析:

  1、地位和作用

  一元二次方程根与系数的关系是在学习了一元二次方程的解法和根的判别式之后引入的。它深化了两根与系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,也是方程理论的重要组成部分。

  2、教学重点难点

  重点:根与系数的关系及其推导。

  难点:正确理解根与系数的关系,灵活运用根与系数的关系。

  二、目标分析:

  1、知识目标:

  掌握一元二次方程的根与系数的关系,并会初步应用。

  2、能力目标:

  通过学生探索一元二次方程的根与系数的关系,培养学生观察分析和综合、判断的能力,提高学生推理论证的能力。

  3、情感目标:

  在探究中得出结论,获取成功的体验,激发学习热情,建立自信心。激发学生发现规律的积极性,鼓励学生勇于探索的精神。

  三、 教法、学法分析:

  为了体现课改中“以学生为主体”的教育理念,在课程的引入和新授中充分地考虑在学生已有知识与新知识间架起一座桥梁,通过创设一定的问题情境,注重由学生自己探索,让学生参与韦达定理的发现、不完全归纳验证以及演绎证明等整个数学思维过程。

  采用“复习-探索发现-应用”的教学过程,鼓励学生动脑、动口、动手,参与教学活动,感悟知识的形成过程,充分调动学生学习的积极性、主动性。

  学生通过对所提问题的求解,在观察、归纳中发现一元二次方程的根与系数间的关系。从已知两根构造方程引入,积极配合使学生能观察出所给出的两根与所作方程系数的关系。比原先求出两根,验证两根之和,之积的难度提高了,但数学思维品质也相对提高了。实践证明,只要教学语言使用得当,问题情境设计得好,学生是能够从题目中去获得发现的。

  四、过程分析:

  为遵循学生的认识规律,体现学生的主动性,我的设计意图是以创设“学习环境”为主要任务,以主动学习为核心的教学操作策略,教学过程设计体现以知识为载体,思维为主线,能力为目标的原则。

  1、创设情景,导入新知 首先让学生回忆一元二次方程的求解方法,写出它的一般形式和求根公式,然后解几个一元二次方程。这一环节一是为了复习前面所学的内容,二是为抛出问题引入新的学习内容做好铺垫。

  2、引发思考,探索新知

  引导他们经历一元二次方程根与系数的关系的形成过程,体验新的知识是从已有的知识中自然地“长”出来的。探究的过程,我给学生设计了“解——算——验证——推导”的模式,最终得出一元二次方程根与系数的关系。

  3、知识应用

  解决实际问题,是学习知识的最终目的,也是知识的生命所在,这样才能将新知识真正融入已有的知识体系中。在这里我设置了三个例题,主要是为了及时巩固新知,引导学生正确书写,进一步加深对一元二次方程根与系数的关系的理解。

  4、达标测试

  学以致用,最后我设计了4个小题通过学生独立完成来进一步体现学生对所学知识的掌握情况。以便课下做实时的辅导训练。

  5、小结提高

  (1).一元二次方程根与系数的关系的推导是在求根公式的基础上进行.它深化了两根的和与积和系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础.

  (2).以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力.

  6、布置作业 必做题

  (1). 已知x1,x2是方程-2x2+5x+6=0的两个根,则x1+x2= ,x1x2= 。

  (2).已知方程2x2-7x+m=0的根是4,求它的另一根及m的值.


qq二次元网名可爱-二次元可爱网名3篇(扩展6)

——qq男生可爱网名3篇

qq男生可爱网名1

  1) 踌躇满志

  2) 乌鸦也能展翅高飞

  3) 大不了重头再来

  4) 为自己打气,加油!

  5) 大步向前跨*

  6) 勤奋-逢考必過!

  7) ┕说好的,要努力┕

  8) 命 甴己造

  9) 聆听、我爱你。

  10) 一个人演奏近似这完美音阶

  11) 默念丶那份爱

  12) 指间轻纱°

  13) 树深时见鹿

  14) 我们晒着阳光望着遥远

  15) 静若繁花﹑谁续演悲殇ノ

  16) 寻沫、雨悠扬

  17) 呢喃的歌声

  18) 爱情ヽ消失在茫茫的人海

  19) 转角预定愛*

  20) 微笑听雨

qq男生可爱网名2

  1) 疏雨萧萧千行泪

  2) 水。净蓝

  3) 时光小偷/*

  4) 远远的望去ゝ飘云的天空

  5) 南城以北逆光少年°

  6) 莫言歌

  7) 梦过后

  8) 晴天娃娃的`淚

  9) 纪念夏日的吻礼

  10) ゞ渲染ら流星ㄟ的颜色╰︶

  11) 太坚强是软弱

  12) 折翼天使不孤单

  13) 又何必自找失落╮

  14) 天长地久

  15) 适者生存,-

  16) ^落荒而逃不及迎刃而解^

  17) 天天向上

  18) 袒胸露背迎万箭

  19) 向日葵开始妩媚

  20) 迷迭香的记忆


qq二次元网名可爱-二次元可爱网名3篇(扩展7)

——一元二次方程数学教学设计3篇

一元二次方程数学教学设计1

  第一课时

  一、教学目标

  1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

  2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。

  3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。

  二、重点·难点·疑点及解决办法

  1.教学重点:

  会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

  2.教学难点:

  根据数与数字关系找等量关系。

  3.教学疑点:

  学生对列一元二次方程解应用问题中检验步骤的理解。

  4.解决办法:

  列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

  三、教学过程

  1.复习提问

  (1)列方程解应用问题的步骤?

  ①审题,②设未知数,③列方程,④解方程,⑤答。

  (2)两个连续奇数的表示方法是,(n表示整数)

  2.例题讲解

  例1 两个连续奇数的积是323,求这两个数。

  分析:

  (1)两个连续奇数中较大的奇数与较小奇数之差为2,

  (2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。

  以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。

  解法(一) 设较小奇数为x,另一个为,

  据题意,得

  整理后,得

  解这个方程,得。

  由得,由得,

  答:这两个奇数是17,19或者-19,-17。

  解法(二) 设较小的奇数为,则较大的奇数为。

  据题意,得

  整理后,得

  解这个方程,得。

  当时,

  当时,。

  答:两个奇数分别为17,19;或者-19,-17。

  解法(三) 设较小的奇数为,则另一个奇数为。

  据题意,得

  整理后,得

  解得,,或。

  当时,。

  当时,。

  答:两个奇数分别为17,19;-19,-17。

  引导学生观察、比较、分析解决下面三个问题:

  1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?

  2.解题中的x出现了负值,为什么不舍去?

  答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。

  3.选出三种方法中最简单的一种。

  练习1.两个连续整数的积是210,求这两个数。

  2.三个连续奇数的和是321,求这三个数。

  3.已知两个数的和是12,积为23,求这两个数。

  学生板书,练习,回答,评价,深刻体会方程的思想方法。

  例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。

  分析:数与数字的关系是:

  两位数十位数字个位数字。

  三位数百位数字十位数字个位数字。

  解:设个位数字为x,则十位数字为,这个两位数是。

  据题意,得,

  整理,得,

  解这个方程,得(不合题意,舍去)

  当时,

  答:这个两位数是24。

  以上分析,解答,教师引导,板书,学生回答,体会,评价。

  注意:在求得解之后,要进行实际题意的检验。

  练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35)

  教师引导,启发,学生笔答,板书,评价,体会。

  四、布置作业

  补充:一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。

  五、板书设计

  探究活动

  将进货单价为40元的商品按50元售出时,能卖500个,已知该商品每涨价1元时,其销售量就减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?

  参考答案:

  精析:此题属于经营问题.设商品单价为(50+)元,则每个商品得利润元,因每涨1元,其销售量会减少10个,则每个涨价元,其销售量会减少10个,故销售量为(500)个,为赚得8000元利润,则应有(500).故有=8000

  当时,50+=60,500=400

  当时,50+=80,500=200

  所以,要想赚8000元,若售价为60元,则进货量应为400个,若售价为80元,则进货量应为200个.

一元二次方程数学教学设计2

  教学目标:

  (1)理解一元二次方程的概念

  (2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

  (2)会用因式分解法解一元二次方程

  教学重点:一元二次方程的概念、一元二次方程的一般形式

  教学难点:因式分解法解一元二次方程

  教学过程:

  (一)创设情景,引入新课

  实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0

  由学生说出这几个方程的共同特征,从而引出一元二次方程的`概念。

  (二)新授

  1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)

  练习

  2:一元二次方程的一般形式(形如aX+bX+c=0)

  任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零

  3:讲解例子

  4:利用因式分解法解一元二次方程

  5:讲解例子

  6:一般步骤

  练习

  (三)小结

  (四)布置作业

  板书设计

一元二次方程数学教学设计3

  一、教学目标

  1.知识与技能

  (1)会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释;

  2.过程与方法

  通过猜想、探讨构建一元二次方程模型.

  3.情感、态度与价值观

  (1)通过自主、探究性学习,使学生养成良好的思维习惯;

  (2)通过对方程解的合理性解释,培养学习实事求是的作风.

  二、教学重点难点

  1.重点

  找出问题中的数量关系;

  2.难点

  找等量关系并列出相应方程.

  三、教材分析

  本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都创造一些探索交流的机会,让学生了解数学知识的发展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型.

  四、教学过程与互动设计

  (一)温故知新

  1.请同学们回忆并回答解一元一次方程应用题的一般步骤:

  第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;

  第二步:找出能够表示应用题全部含义的相等关系;

  第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程;

  第四步:解这个方程,求出未知数的值;

  第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(包括单位名称.)

  2.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样.

  我们先来解一些具体的题目,然后总结一些规律或应注意事项.

  (二)创设情景,导入新课

  1.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米.

  若梯子的顶端下滑1米,那么

  (1)猜一猜,底端也将滑动

  1米吗?

  (2)列出底端滑动距离所满足的方程.

  【答案】①底端将滑动1米多

  ②提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际.

  2.【探究活动】1.某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润*均增长的百分率是多少(精确到0.1%)?

  (1)学生讨论:怎样计算月利润增长百分率?

  【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润

  例8 某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率.

  分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价为原来的56(1-x)的(1-x)倍.

  解:设*均降价百分率为x,根据题意,得

  56(1-x)2=31.5

  解这个方程,得

  x 1 = 1.75,x2=0.25

  因为降价的百分率不可能大于1,所以x1 = 1.75不符合题意,符合题意要求的是x=0.25=25%

  答每次降价百分率为25%.

  【跟踪练习】

  某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%).

  【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:①整体地,系统地审清问题;②把握问题中的等量关系;③正确求解方程并检验解的合理性.

  (三)应用迁移,巩固提高

  1.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是( )

  (

  A)200(1+a%)2=148 (B)200(1-a%)2=148

  (C)200(1-2a%)=148 (D)200(1-a2%)=148

  2.为绿化家乡,某中学在20xx年植树400棵,计划到20xx年底,使这三年的植树总数达到1324棵,求此校植树*均增长的百分数?

  (四)达标测试

  1.某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果*均每月增长率为x,则所列方程应为()

  A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800

  2.某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年*均增长率为,根据题意列方程.

  ,一元二次方程的解法

  3.某农场的粮食产量在两年内从3000吨增加到3630吨,*均每年增产的百分率是多少?

  4.某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份*均每月增长率是多少?(精确到1%)

  5.某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数

  五、课堂小结


qq二次元网名可爱-二次元可爱网名3篇(扩展8)

——一元二次方程根与系数的关系说课稿

一元二次方程根与系数的关系说课稿

  作为一名教学工作者,通常会被要求编写说课稿,说课稿有利于教学水*的提高,有助于教研活动的开展。那么优秀的说课稿是什么样的呢?下面是小编帮大家整理的一元二次方程根与系数的关系说课稿,欢迎阅读与收藏。

  [教材分析]

  中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。因此一元二次方程便成为了方程中研究的重要内容。一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。

  [学生分析]

  进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。再加上我所执教的学生,他们有着较强的认知力与求知欲,

  基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。

  [教学目标]

  在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。

  能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。

  理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。

  [教学重难点]

  发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程

  [教学过程]

  一、复习导入

  请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。

  二、探求新知

  数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。初探新知中,我将学生们分成两组,分别对二次项系数为1的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。我在这些方程中安排了两个无理根方程。当学生们发现这两个无理根在求和,求积后,竟变成了有理数,而且每一组两根和(积)都与系数有着密切的联系,此时的他们不难对两根和与两根积产生关注,经历了对二次项系数为1的一元二次方程两根和差积商的研究后,确定了课题并获得猜想:“两根和等于一次项系数的相反数,两根积等于常数项。”对于这一猜想,会有学生提出不同看法,他们提出研究二次项系数非1的一元二次方程。学生的质疑启动再探新知。直接研究一元二次方程两根和、两根积与系数的关系。这一环节中我不再给出具体的方程要求研究,故除了部分同学自定义方程求根求和求积后产生猜想,还有部分同学对仍保留在板书部分的求根公式着手进行两根和,积的运算。这两种方案齐头并进,当前者通过不断验证来说明他们猜想的可靠度时,后者通过论证,在严格意义下,说明了此结论的正确性。对于论证中学生出现的问题,我们在第一时间内揪错指正,

  在知识初探与再探后,学生获得了新知,得到了一元二次方程根与系数的关系,

  三、训练感悟

  我将之前从学生那里收集来的错解对照表中方程,询问检验其正误的方法。学生根据已有经验,将其代入方程,进行检验。为寻求更为简便的方法,引出作用一,利用根与系数的关系,不解方程检验两数是否为原方程的根。我再给出两例,便于巩固练习,更明确了只有当两数和(积)同时满足方程两根和(积)的时侯,才是正确的根。当学生们正为找到了一种行之有效的检验方法,高兴不已的时候。突然间,表格中的数据丢失了,我分别隐去了方程的一根及b,c,a三个系数。为了将材料修复,学生小组展开热烈的讨论。有了上一题的经验,学生们会利用根与系数关系,不解方程,求出另一根及系数。也会使用代入求解的方法解题,通过新旧方法的比较,在训练中获得感悟:方法的选择在于简便,学生们在选择了恰当的方法后,修复了材料也巩固了新知。

  四、总结提升

  由学生回顾知识的发生发展及应用过程,以“我的收获”与“我的疑惑”交流心得。我再帮助学生整理所学知识,引导领会数学的思想。我还会自豪的告诉他们,数学家们还发现了存在于一元n次方程中的根与系数的普遍关系,这一内容将在高数中有所涉及,激励奋进五、分层作业,除必做题外,留有一道思考题:已知x1,x2分别是方程2x2+3x-5=0和两个根,利用根与系数关系,求:(1)x12x2 +x1x22(2)x12 +x22(3)x1-x2的值。作为能力上的提升。也为下一课内容作下铺垫。

  [设计意图]

  现在的设计较之以往,有所继承,有所变革。

  1.研究启动入口不同

  过去我总是先给出若干具体方程要求学生求根,并计算两根和(积),作出猜想。这样的数学后曾有学生问我:“老师为什么会想到两根和(积)与系数的关系,而不是其它?”这种疑问的产生一定与过去设计指定了学生的活动过程有关,为了给学生的活动指向更为宽泛,让两根和积与系数的研究更显合理,现在的设计中主要体现了由数到式的研究,从两根和差积商的重组合再有所观察,有所挑选,方才定位于两根和(积)作进一步的探究。这种设计正是从数学内部下了功夫,由知识线索的连贯性,师生共同理顺了实验对象的来龙去脉,从数学本身上培养了学生的观察、分析、概括的综合能力。

  2.探究部分两步走

  我将二次项系数为1,非1的一元二次方程分两次出现,分别放置与知识初探和再探两个环节,这样设计的原因有一:学生的认知能力总是有所差异的,如果将这些方程合二为一加以研究的话,一部分同学对别人获得的正确猜想是瞬间接受,却缺乏思维的参与。事实上,研究事物往往从简单到复杂,在这里,当a=1时,易找规律,当a ≠1后造成的认知冲突,更是激发了这一猜想的`完善。其实这一串,由实验——猜想——再实验——再猜想的思维过程,既符合认知规律,也是一种研究性学习的示范,一种创造性能力的培养。为了让每一个学生都亲身参与其中,真正感受由“实践——认识——再实践——再认识”这一客观世界认知论的基本规律。便是我如此设计的原因之一。原因二:研究入口处,利用两根和差积商的结果,优选出对和积的研究。初探中二次项系数为1的方程两根计算足以起到这一筛选作用。因此在下一环节的再探新知中,便自然关闭了对两根差与商相对较为繁琐的计算,直接由两根和积入手研究与系数的关系,提高了研究的效率。

  3.再探新知放手走

  我没有再给出任何具体的方程以供研究,这里的放手,引出了学生不同的操作方法。一部分学生把注意力转放在求根公式上展开直接论证,就连另一部分学生自定义方程数据研究的方式也各不相同,他们有的翻开笔记本查阅之前解方程的资料;有的反凑特殊值方程;更有的会从中提炼出代数论证的方法;当然也有借助于计算器完成了繁琐的计算。

  放手的探究,为了给学生更大的思维空间,让学生有更多方法的选择,从而展开自主的学习。

  [尾声]

  但原学生们带着对数学的兴趣与喜爱,在学的海洋里,奋勇搏击。而作为一名青年教师的我,亦将在教学的舞台上,不断求索。多由学生所想来引导;多设角度空间去探究;多从细节处渗透数学思想,充分利用数学课堂来达成文化传承与发展创新的协调统一。


qq二次元网名可爱-二次元可爱网名3篇(扩展9)

——《二次函数与一元二次方程》教学反思 (菁选3篇)

《二次函数与一元二次方程》教学反思1

  一、教学目标:

  1。经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

  2。理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

  3。能够利用二次函数的图象求一元二次方程的近似根。

  二、教学重点、难点:

  教学重点:

  1。体会方程与函数之间的联系。

  2。能够利用二次函数的图象求一元二次方程的近似根。

  教学难点:

  1。探索方程与函数之间关系的过程。

  2。理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

  三、教学方法:启发引导 合作交流

  四:教具、学具:课件

  五、教学媒体:计算机、实物投影。

  六、教学过程:

  [活动1] 检查预习 引出课题

  预习作业:

  1。解方程:(1)x2+x—2=0; (2) x2—6x+9=0; (3) x2—x+1=0; (4) x2—2x—2=0。

  2。 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x—4=0的解。

  师生行为:教师展示预习作业的内容, 指名回答,师生共同回顾旧知,教师做出适当总结和评价。

  教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

  设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

  [活动2] 创设情境 探究新知

  问题

  1。课本P16 问题。

  2。结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

  (结合预习题1,完成课本P16 观察中的题目。)

  师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

  二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

  二次函数y=ax2+bx+c的图象和x轴交点

  一元二次方程ax2+bx+c=0的根

  一元二次方程ax2+bx+c=0根的判别式=b2—4ac

  两个交点

  两个相异的实数根

  b2—4ac 0

  一个交点

  两个相等的实数根

  b2—4ac = 0

  没有交点

  没有实数根

  b2—4ac 0

  教师重点关注:

  1。学生能否把实际问题准确地转化为数学问题;

  2。学生在思考问题时能否注重数形结合思想的应用;

  3。学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

  设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

  [活动3] 例题学习 巩固提高

  问题: 例 利用函数图象求方程x2—2x—2=0的实数根(精确到0。1)。

  师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

  教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

  设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

  [活动4] 练习反馈 巩固新知

  问题:(1) P97。习题 1、2(1)。

  师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。

  教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。

  设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。

  [活动5] 自主小结,深化提高:

  1。通过这节课的学习,你获得了哪些数学知识和方法?

  2。这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。

  师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。

  设计意图:

  1。题促使学生反思在知识和技能方面的收获;

  2。题让学生反思自己的学习活动、认知过程,总结解决问题的"策略,积累学习知识的方法,力求不同的学生有不同的发展。

  [活动6] 分层作业,发展个性:

  1。(必做题)阅读教材并完成P97 习题21。2: 3、4。

  2。(备选题)P97 习题21。2:5、6

  设计意图:分层作业,使不同层次的学生都能有所收获。

  七、教学反思:

  1。注重知识的发生过程与思想方法的应用

  《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生跳一跳就可以摘到桃子。

  探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形, 从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

  2。关注学生学习的过程

  在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的*台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造海阔凭鱼跃,天高任鸟飞的课堂境界。

  3。强化行为反思

  反思是数学的重要活动,是数学活动的核心和动力,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,数学日记就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。数学日记该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

  4。优化作业设计

  作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。

《二次函数与一元二次方程》教学反思2

  教学目标的设定:

  一、 教学知识点:

  (1)、 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  (2)、 理解二次函数与 x 轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.

  (3)、 理解一元二次方程的根就是二次函数与y =h 交点的横坐标.

  二、 能力训练要求:

  (1)、经历探索二次函数与一元二次方程的关系的过程,培养学生的探 索能力和创新精神。

  (2)、通过观察二次函数与x 轴交 点的个数,讨论 一元二次方程的根的情况,进一步培养学生的数形结合思想.

  (3)、通过学生共同观察和讨论,培养合作交流意识.

  三、 情感与价值观要求

  (1)、 经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

  (2)、 具有初步的创新精神和实践能力.

  教学重点:(1).体会方程与函数之间的联系.

  (2).理解何 时方程有两个不等的实根、两个相等的实根和没有实根.

  (3).理解一元二次方程的根就是二次函数与y =h 交点的横坐标.

  教学难点(1)、探索方程与函数之间的联系的过程.

  (2)、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系. 解决重难点的方法1、 设问题情境,引入新课

  我们已学过一元一次方程kx+b=0 (k≠0)和一次函数y =kx+b (k≠0)的关系,你还记得吗?

  它们之间的关系是:当一次函数中的函数值y =0时,一次函数y =kx+b就转

  化成了一元一次方 程kx+b=0,且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解.

  现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索这个问题.

《二次函数与一元二次方程》教学反思3

  一、教学目标:

  1。经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

  2。理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

  3。能够利用二次函数的图象求一元二次方程的近似根。

  二、教学重点、难点:

  教学重点:

  1。体会方程与函数之间的联系。

  2。能够利用二次函数的图象求一元二次方程的近似根。

  教学难点:

  1。探索方程与函数之间关系的过程。

  2。理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

  三、教学方法:启发引导 合作交流

  四:教具、学具:课件

  五、教学媒体:计算机、实物投影。

  六、教学过程:

  [活动1] 检查预习 引出课题

  预习作业:

  1。解方程:(1)x2+x—2=0; (2) x2—6x+9=0; (3) x2—x+1=0; (4) x2—2x—2=0。

  2。 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x—4=0的解。

  师生行为:教师展示预习作业的内容, 指名回答,师生共同回顾旧知,教师做出适当总结和评价。

  教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

  设计意图:这两道预习题目是对旧知识的`回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

  [活动2] 创设情境 探究新知

  问题

  1。课本P16 问题。

  2。结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

  (结合预习题1,完成课本P16 观察中的题目。)

  师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

  二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

  二次函数y=ax2+bx+c的图象和x轴交点

  一元二次方程ax2+bx+c=0的根

  一元二次方程ax2+bx+c=0根的判别式=b2—4ac

  两个交点

  两个相异的实数根

  b2—4ac 0

  一个交点

  两个相等的实数根

  b2—4ac = 0

  没有交点

  没有实数根

  b2—4ac 0

  教师重点关注:

  1。学生能否把实际问题准确地转化为数学问题;

  2。学生在思考问题时能否注重数形结合思想的应用;

  3。学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

  设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

  [活动3] 例题学习 巩固提高

  问题: 例 利用函数图象求方程x2—2x—2=0的实数根(精确到0。1)。

  师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

  教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

  设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

  [活动4] 练习反馈 巩固新知

  问题:(1) P97。习题 1、2(1)。

  师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。

  教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。

  设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。

  [活动5] 自主小结,深化提高:

  1。通过这节课的学习,你获得了哪些数学知识和方法?

  2。这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。

  师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。

  设计意图:

  1。题促使学生反思在知识和技能方面的收获;

  2。题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。

  [活动6] 分层作业,发展个性:

  1。(必做题)阅读教材并完成P97 习题21。2: 3、4。

  2。(备选题)P97 习题21。2:5、6

  设计意图:分层作业,使不同层次的学生都能有所收获。

  七、教学反思:

  1。注重知识的发生过程与思想方法的应用

  《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生跳一跳就可以摘到桃子。

  探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形, 从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

  2。关注学生学习的过程

  在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的*台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造海阔凭鱼跃,天高任鸟飞的课堂境界。

  3。强化行为反思

  反思是数学的重要活动,是数学活动的核心和动力,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,数学日记就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。数学日记该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

  4。优化作业设计

  作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。

推荐访问:网名 可爱 qq qq二次元网名可爱-二次元可爱网名3篇 qq二次元网名可爱-二次元可爱网名1 可爱的二次元网名